Ultra-thin supported liquid films: effects of van der Waals interactions

<u>Cécile Clavaud</u>, Christian Frétigny, Laurence Talini SIMM lab, ESPCI (France)

Ultra-thin supported liquid films

Supported liquid films of thickness $h \leq 50 \text{ nm}$:

- modification of the dynamics?
- van der Waals air-solid interactions through the liquid: $\mathcal{E}_{vdW} \propto A_H/h^2$?

Ultra-thin supported liquid films

Supported liquid films of thickness $h \leq 50 \text{ nm}$:

- modification of the dynamics?
- van der Waals air-solid interactions through the liquid: $\mathcal{E}_{\text{vdW}} \propto A_H/h^2$?

Goal: form these films and measure their physical properties.

Low power laser (30 mW max). Completely wetting liquid on a smooth surface.

Forming a nanometric film: thermally induced Marangoni flow.

$$\lambda_{\ell} = 632.8\,\text{nm},~\lambda_{g} = 560\,\text{nm}:~\text{absorption}.$$

- $R_\ell = 1.5\,\mu\mathrm{m} \ll I_\mathrm{T} \sim 1\,\mathrm{mm}$,
- \bullet $\Delta heta < 1 \,^{\circ}$ C,
- Pe ≪ 1.

Forming a nanometric film: thermally induced Marangoni flow.

$$\lambda_{\ell} = 632.8\,\text{nm},~\lambda_{g} = 560\,\text{nm}:~\text{absorption}.$$

- $R_\ell=1.5\,\mu\mathrm{m}\ll I_\mathrm{T}\sim 1\,\mathrm{mm}$,
- \bullet $\Delta heta < 1 \,^{\circ}$ C,
- Pe ≪ 1.

Forming a nanometric film: thermally induced Marangoni flow.

$$\lambda_{\ell} = 632.8\,\text{nm},~\lambda_g = 560\,\text{nm}:~\text{absorption}.$$

- $R_\ell = 1.5\,\mu\mathrm{m} \ll I_\mathrm{T} \sim 1\,\mathrm{mm}$,
- \bullet $\Delta heta < 1 \,^{\circ}$ C,
- Pe ≪ 1.

Forming a nanometric film: thermally induced Marangoni flow.

$$\lambda_{\ell} = 632.8\,\text{nm},~\lambda_{g} = 560\,\text{nm}:~\text{absorption}.$$

- $R_\ell = 1.5\,\mu\mathrm{m} \ll I_\mathrm{T} \sim 1\,\mathrm{mm}$,
- \bullet $\Delta heta < 1 \,^{\circ}$ C,
- Pe ≪ 1.

Non-zero stationary thickness h_{stat}

Non-zero stationary thickness h_{stat} depends on the Marangoni forcing.

Dimensionless variables:

$$R = \frac{r}{I_T}$$
, $H = \frac{h}{h_0}$, Θ , T .

Dimensionless parameters:

$$\kappa_{\text{c}} = \frac{\text{thermal length}}{\text{capillary length}}, \quad E = \frac{\text{van der Waals term}}{\text{capillary term}}, \quad A = \frac{\text{Marangoni forcing}}{\text{capillary term}}.$$

Dimensionless variables:

$$R = \frac{r}{l_T}, H = \frac{h}{h_0}, \Theta, T.$$

Dimensionless parameters:

$$\kappa_{c} = \frac{\text{thermal length}}{\text{capillary length}}, \quad E = \frac{\text{van der Waals term}}{\text{capillary term}}, \quad A = \frac{\text{Marangoni forcing}}{\text{capillary term}}.$$

$$\partial_T H + \frac{1}{R} \partial_R \left[R H^3 \partial_R \left(\Delta H - \kappa_c^2 H + \frac{E}{H^3} \right) \right] - \frac{A}{R} \partial_R \left(R H^2 \partial_R \Theta \right) = 0.$$

$$\partial_T H + \frac{1}{R} \partial_R \left[R H^3 \partial_R \left(\Delta H - \kappa_c^2 H + \frac{E}{H^3} \right) \right] - \frac{A}{R} \partial_R \left(R H^2 \partial_R \Theta \right) = 0.$$

Numerical resolution:

$$\partial_T H + \frac{1}{R} \partial_R \left[R H^3 \partial_R \left(\Delta H - \kappa_c^2 H + \frac{E}{H^3} \right) \right] - \frac{A}{R} \partial_R \left(R H^2 \partial_R \Theta \right) = 0.$$

Numerical resolution:

If
$$\mathcal{E}_{\text{vdW}} \propto A_H/h^2$$
, $h_{\text{stat}} = \left(\frac{A_H}{12\pi\gamma_\theta\theta_{\text{max}}}\right)^{1/2}$: depends on the forcing.

Steady state thermal fluctuations

Pottier, Frétigny, Talini, PRL 2015.

Collaboration with Thomas Bickel (LOMA, Bordeaux, France).

Effect of the van der Waals interactions on the surface thermal fluctuations.

Conclusions and future work

Form nanometric films with Marangoni flow.

Thinning dynamics

- Non-zero stationary thickness that depends on the Marangoni forcing.
- Thin film equation: numerics agree with experiments.
- Exact form of \mathcal{E}_{vdW} ?

Conclusions and future work

Form nanometric films with Marangoni flow.

Thinning dynamics

- Non-zero stationary thickness that depends on the Marangoni forcing.
- Thin film equation: numerics agree with experiments.
- Exact form of \mathcal{E}_{vdW} ?

Steady state fluctuations

- Preliminary results: effect of air-solid van der Waals interactions through the liquid.
- Lower frequencies or thinner films: noise problem.